1/x+10-4=3x-4/x+10

Simple and best practice solution for 1/x+10-4=3x-4/x+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/x+10-4=3x-4/x+10 equation:



1/x+10-4=3x-4/x+10
We move all terms to the left:
1/x+10-4-(3x-4/x+10)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x+10)!=0
x∈R
We add all the numbers together, and all the variables
1/x-(3x-4/x+10)+6=0
We get rid of parentheses
1/x-3x+4/x-10+6=0
We multiply all the terms by the denominator
-3x*x-10*x+6*x+1+4=0
We add all the numbers together, and all the variables
-4x-3x*x+5=0
Wy multiply elements
-3x^2-4x+5=0
a = -3; b = -4; c = +5;
Δ = b2-4ac
Δ = -42-4·(-3)·5
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{19}}{2*-3}=\frac{4-2\sqrt{19}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{19}}{2*-3}=\frac{4+2\sqrt{19}}{-6} $

See similar equations:

| 14x=18x | | 4x/5=-12/10 | | x+2x+3x=99 | | .10x+.25(70)=25.5 | | X+3x=5x+8 | | (X-C1)^2+y^2=C^2 | | (X-C1)^2+y^2=C^2=C2 | | 3x-2=4(x-1)=2x | | 5p+5+5p=21 | | 4x^2+33x-1960=0 | | 4x^2+34x-1960=0 | | 2x^2+17x-980=0 | | 2x^2+17x+880=0 | | 2x^2+17x-880=0 | | 3x+1-x+7=0 | | 4m-6+2m=+5 | | 24=-7v+5(v+2) | | 5x-3=3(x | | 7p+7+9p=-21 | | -6(x+2)-15=10+5 | | 5a=18 | | -20+18=m-4 | | 5x-3=(x+7)+3x4 | | 3x-2=4(x-1)+2x= | | |3x−5|+6=25 | | 5/7t+14=-11 | | 2x^2+50x-7900=0 | | 7^-8y=9 | | n–27.3=15.9 | | 5x^2+5=55 | | 3x+10=5x-5. | | 13w+19w-6+2=-4w+2-6 |

Equations solver categories