1/x+3/2x=1/x+1

Simple and best practice solution for 1/x+3/2x=1/x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/x+3/2x=1/x+1 equation:



1/x+3/2x=1/x+1
We move all terms to the left:
1/x+3/2x-(1/x+1)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x+1)!=0
x∈R
We get rid of parentheses
1/x+3/2x-1/x-1=0
We calculate fractions
(-2x+1)/2x^2+3x/2x^2-1=0
We multiply all the terms by the denominator
(-2x+1)+3x-1*2x^2=0
We add all the numbers together, and all the variables
3x+(-2x+1)-1*2x^2=0
Wy multiply elements
-2x^2+3x+(-2x+1)=0
We get rid of parentheses
-2x^2+3x-2x+1=0
We add all the numbers together, and all the variables
-2x^2+x+1=0
a = -2; b = 1; c = +1;
Δ = b2-4ac
Δ = 12-4·(-2)·1
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-3}{2*-2}=\frac{-4}{-4} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+3}{2*-2}=\frac{2}{-4} =-1/2 $

See similar equations:

| (6+2x)6=8^2 | | 5x−5=2x+1 | | 5(x−5)=2(x+1) | | Y^2+1.4y=2.4 | | 3w+2w+50°=180° | | 10×+2=8x+10 | | x=8−4 | | -4x^2+2/3x=0 | | 2x-3x^2=4 | | 2-3x=4x-7 | | 3/4x+1/2=1/4(x-4) | | 2^x^2-7x+14=16 | | (x2+x+126)=0 | | 11n-15=3n+17 | | 2+3=2x+7,5 | | 4/5+1/3x=-2/3x+9/5 | | 4/5+1/3x=2/3x+9/5 | | 24/12=x/15 | | 5x-3=3(x+1) | | 10^x=1,6 | | 4^x-5=65^2x | | f+1/4=−7/2 | | 4^2-5=65^2x | | 5x+5=1/2*70 | | f+1/4=−7/2​ | | 3(4x-5)+6=-x-22 | | 5x+5=1/270 | | 3(3x+3)=-x-1 | | -3x+23=4(x-3) | | 5x+5=1/2(136-66) | | x+43=2(3x-4)-4 | | -24=3(3x+4) |

Equations solver categories