1/x+5=1/(2x)

Simple and best practice solution for 1/x+5=1/(2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/x+5=1/(2x) equation:



1/x+5=1/(2x)
We move all terms to the left:
1/x+5-(1/(2x))=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/x-(+1/2x)+5=0
We get rid of parentheses
1/x-1/2x+5=0
We calculate fractions
2x/2x^2+(-x)/2x^2+5=0
We add all the numbers together, and all the variables
2x/2x^2+(-1x)/2x^2+5=0
We multiply all the terms by the denominator
2x+(-1x)+5*2x^2=0
Wy multiply elements
10x^2+2x+(-1x)=0
We get rid of parentheses
10x^2+2x-1x=0
We add all the numbers together, and all the variables
10x^2+x=0
a = 10; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·10·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*10}=\frac{-2}{20} =-1/10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*10}=\frac{0}{20} =0 $

See similar equations:

| 500=15x+100 | | (-3x)/5=9 | | .4x=10.2 | | (1/4x)+(7/8)=3/8 | | 16x-9=14x+3 | | 120=20h+50 | | 20-2p+3^2p=4 | | 7.x+20=34 | | 2x²+19x+167=0 | | 3x^2−18x+1=7x−7 | | 12.x-9=111 | | x=5/0.67 | | 2d+12=2(+6) | | 154°=(9x-1)° | | 55+9r-1=180 | | 2(x+12)=13x+24-x | | 55+9r-1=91 | | 6x4+10x2-16=0 | | -x+15=–32 | | 2d+2=-38 | | 2x=150-0.5x | | 6x−(5x+5)=−8−2(x+12) | | 9x–14=2x | | 5.x+12=62 | | 7.5x+15=180 | | 91=w+1 | | 2x=19+3x(-1) | | 2x=150-0.50x | | -4(-11+4n)=3(-2n+9) | | 2x-4=8=5x | | 8x−54=82 | | 12.x-4=8 |

Equations solver categories