If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/x-1/x-5=1/3x
We move all terms to the left:
1/x-1/x-5-(1/3x)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
1/x-1/x-(+1/3x)-5=0
We get rid of parentheses
1/x-1/x-1/3x-5=0
We calculate fractions
(-3x+1)/3x^2+(-x)/3x^2-5=0
We add all the numbers together, and all the variables
(-3x+1)/3x^2+(-1x)/3x^2-5=0
We multiply all the terms by the denominator
(-3x+1)+(-1x)-5*3x^2=0
Wy multiply elements
-15x^2+(-3x+1)+(-1x)=0
We get rid of parentheses
-15x^2-3x-1x+1=0
We add all the numbers together, and all the variables
-15x^2-4x+1=0
a = -15; b = -4; c = +1;
Δ = b2-4ac
Δ = -42-4·(-15)·1
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{19}}{2*-15}=\frac{4-2\sqrt{19}}{-30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{19}}{2*-15}=\frac{4+2\sqrt{19}}{-30} $
| 14x2=-19,5x-360 | | 0,05x+x=108 | | 0,5x+x=108 | | -2(z=4)=-30 | | 2x+3(x-1=27 | | 2x-7.2=4x-5.4 | | 18-(2x+2)=3(x+4)-11 | | -66=3n-6 | | G(x)=-x+28 | | 15x2x=3(x-4) | | -2(z=4)=30 | | 54=2+2b | | 4x-2+3x-7=10x | | 5x-5=25+x | | -2(3x-7)=-22-2x | | 4(1+0.5m)=7m4(1+0.5m)=7m | | 4v/3=-20 | | 180=7x+2x+4+x+6 | | 5m-2m=4-2m | | -2/3(4x-2)=3x+7 | | 2x2-11x=40 | | 2x+10=302x=40x=20 | | -6(-3p-2=-6p-12 | | 5x2+28x=12 | | -4/9a=-3 | | x12.4-47=53 | | -3(1/2)=1/2x+1/2x+x. | | √9x−8=19x-83=1 | | 7=16+9x | | 5(4y+6)=30 | | 6x-9X-4=2x=-2 | | 10=-34-4x |