10(2+x)=15x(x-1)+5

Simple and best practice solution for 10(2+x)=15x(x-1)+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10(2+x)=15x(x-1)+5 equation:



10(2+x)=15x(x-1)+5
We move all terms to the left:
10(2+x)-(15x(x-1)+5)=0
We add all the numbers together, and all the variables
10(x+2)-(15x(x-1)+5)=0
We multiply parentheses
10x-(15x(x-1)+5)+20=0
We calculate terms in parentheses: -(15x(x-1)+5), so:
15x(x-1)+5
We multiply parentheses
15x^2-15x+5
Back to the equation:
-(15x^2-15x+5)
We get rid of parentheses
-15x^2+10x+15x-5+20=0
We add all the numbers together, and all the variables
-15x^2+25x+15=0
a = -15; b = 25; c = +15;
Δ = b2-4ac
Δ = 252-4·(-15)·15
Δ = 1525
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1525}=\sqrt{25*61}=\sqrt{25}*\sqrt{61}=5\sqrt{61}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-5\sqrt{61}}{2*-15}=\frac{-25-5\sqrt{61}}{-30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+5\sqrt{61}}{2*-15}=\frac{-25+5\sqrt{61}}{-30} $

See similar equations:

| ((5x+16)/2)=x+5 | | -10=28v | | 31+5w=16 | | 9.18=y+10.8 | | 6r+18=3r+54 | | 3/7y=3/7 | | -8z-6=3-9z | | 4b+10b+5=23 | | -4v-9=3 | | 33a+64a=194 | | z=-3z+8 | | 0.16x/600000=0 | | 6+9x6+9=x | | 45-5x=12+x | | 54-6u=3u | | 64+v=9v | | 4w-14=5 | | 6453454345673544546453345=3x | | 5-(x+4)=7-2x | | 3^(4x-2)=8 | | 1x+127=71+1x | | 10t-2=8t | | -6x+3=-6x=5 | | -13-7n=-6-9(n+3 | | r-34=-23 | | 6x+5=6x-9 | | 2=3y−4 | | x+17+x=180 | | 2(-2.5x-4)=7 | | 13x-10x=15 | | 360=2x+63+63 | | 26=2u-8 |

Equations solver categories