10(3x+3)=20-30+628x2

Simple and best practice solution for 10(3x+3)=20-30+628x2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10(3x+3)=20-30+628x2 equation:



10(3x+3)=20-30+628x^2
We move all terms to the left:
10(3x+3)-(20-30+628x^2)=0
We multiply parentheses
-(20-30+628x^2)+30x+30=0
We get rid of parentheses
-628x^2+30x-20+30+30=0
We add all the numbers together, and all the variables
-628x^2+30x+40=0
a = -628; b = 30; c = +40;
Δ = b2-4ac
Δ = 302-4·(-628)·40
Δ = 101380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{101380}=\sqrt{4*25345}=\sqrt{4}*\sqrt{25345}=2\sqrt{25345}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{25345}}{2*-628}=\frac{-30-2\sqrt{25345}}{-1256} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{25345}}{2*-628}=\frac{-30+2\sqrt{25345}}{-1256} $

See similar equations:

| 16y=18•y-1 | | -20n-15=-15-20n | | -6x+13=19 | | .10x+0.15(50–x)=0.12(50) | | 28.26+9.42x=113.04 | | 21/2+b=3/4 | | -3x+5=-2(x+7+2x+4 | | 01t-3=5 | | 87=3(7+3x)-6 | | -5g-5=-20 | | 2r-4(1+3r)=74 | | 2/3(6x-15)=4x+2(x-13 | | 11-6x=-5 | | 110+10a+22a=558 | | 13x=+21 | | 7(g+81)=77 | | 3+5(9+2n)=482n | | -10-20=-20r | | m—+6=102 | | 36x=56+8x | | 7(x-2)+5=3(2x-1+1 | | a2+9a+6=0 | | d=-25 | | 1=f/3-7 | | 1/12k+9/4=6 | | 6x+15=3x+90 | | 4m-14-11m=-63 | | y-80/4=3 | | 36/c=45/20 | | x+x+5x-5=180 | | x+5x-5=180 | | -10=y-(-18) |

Equations solver categories