10(5+2x)9x=80/52

Simple and best practice solution for 10(5+2x)9x=80/52 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10(5+2x)9x=80/52 equation:



10(5+2x)9x=80/52
We move all terms to the left:
10(5+2x)9x-(80/52)=0
We add all the numbers together, and all the variables
10(2x+5)9x-(+80/52)=0
We multiply parentheses
180x^2+450x-(+80/52)=0
We get rid of parentheses
180x^2+450x-80/52=0
We multiply all the terms by the denominator
180x^2*52+450x*52-80=0
Wy multiply elements
9360x^2+23400x-80=0
a = 9360; b = 23400; c = -80;
Δ = b2-4ac
Δ = 234002-4·9360·(-80)
Δ = 550555200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{550555200}=\sqrt{14400*38233}=\sqrt{14400}*\sqrt{38233}=120\sqrt{38233}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23400)-120\sqrt{38233}}{2*9360}=\frac{-23400-120\sqrt{38233}}{18720} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23400)+120\sqrt{38233}}{2*9360}=\frac{-23400+120\sqrt{38233}}{18720} $

See similar equations:

| -4-15=3-x | | 8(w-7)=5+7w | | 7^5x/7^7x=1/2401 | | 2(m-1)=14 | | 2(m-1)=12 | | 63x-141=180 | | 4w-13=23 | | 8(w-7)=5-7w | | 12=2v-14 | | -18+12y=-6 | | 63x+141=180 | | X-x/4-x/12-x/36=46 | | 4x+7=10x-37 | | 3/4x-4=7/2+1x | | 5x(8x+3x)=2(55) | | n+53+n9=319n= | | 6x+6x=18 | | 40(11+x)=1040 | | 5u-17=73 | | 5(b-3)=25b=8 | | 1/6c=10 | | 6(5b)=54 | | 3x+6=4x×5 | | 2r+3r=-4+6 | | 5x+5=7x-6÷2 | | 2r+3=-4+6 | | 5x-3(4x-7)=-11 | | 4√x+2+3=11 | | 4m^2-27m-49=0 | | 3v-11=14 | | 5u-9=51 | | 2(2-3x)-29+7(x+5)=-59 |

Equations solver categories