If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10(5x-4)+3(2x-1)=12x(2-3x)
We move all terms to the left:
10(5x-4)+3(2x-1)-(12x(2-3x))=0
We add all the numbers together, and all the variables
10(5x-4)+3(2x-1)-(12x(-3x+2))=0
We multiply parentheses
50x+6x-(12x(-3x+2))-40-3=0
We calculate terms in parentheses: -(12x(-3x+2)), so:We add all the numbers together, and all the variables
12x(-3x+2)
We multiply parentheses
-36x^2+24x
Back to the equation:
-(-36x^2+24x)
-(-36x^2+24x)+56x-43=0
We get rid of parentheses
36x^2-24x+56x-43=0
We add all the numbers together, and all the variables
36x^2+32x-43=0
a = 36; b = 32; c = -43;
Δ = b2-4ac
Δ = 322-4·36·(-43)
Δ = 7216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7216}=\sqrt{16*451}=\sqrt{16}*\sqrt{451}=4\sqrt{451}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{451}}{2*36}=\frac{-32-4\sqrt{451}}{72} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{451}}{2*36}=\frac{-32+4\sqrt{451}}{72} $
| 9x/15=0 | | 7x=9x^2-4 | | 3g−13=5 | | -5x=18-2x | | 1/2x=63. | | d/8=56 | | (12x-20)(4x/3)=180 | | 0,11-0,05(x-2)=0,4(x-3)+0,06 | | 20-(-j)=-56 | | -(x-1)+5=2(x+3)=5 | | Y=2x=3(x2) | | (2x-3)/(2)=(3x+8)/(4) | | –14p=–112 | | -(x-1)+5=2(x+3)=1 | | 4+3a=-22 | | -2(x+6)+3=6(x+2)+8 | | (2x+1)+(x+42)=180 | | 6(3-x)+(-9)=-4+2(3x+1)-x | | d/12=13 | | −4x−12=32−3x | | Y=2x+3{x2} | | 1/3x-1=1/2x | | -2x(x+6)+3=6(x+2)+8 | | 6y+4=6y+10 | | 2x-(3-4x)+5=4(2x+3)-9 | | 4(x+22)=124 | | Y=2x+3{x3} | | 3(4x+20)=2(x+40) | | 40x-200=0 | | 5^(x-2)+6=131 | | -4=-6/u | | 10w=5w+20 |