If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10(p+2)8p=61
We move all terms to the left:
10(p+2)8p-(61)=0
We multiply parentheses
80p^2+160p-61=0
a = 80; b = 160; c = -61;
Δ = b2-4ac
Δ = 1602-4·80·(-61)
Δ = 45120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45120}=\sqrt{64*705}=\sqrt{64}*\sqrt{705}=8\sqrt{705}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(160)-8\sqrt{705}}{2*80}=\frac{-160-8\sqrt{705}}{160} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(160)+8\sqrt{705}}{2*80}=\frac{-160+8\sqrt{705}}{160} $
| -x-14-18x=14x-4 | | 18z-16=-11.5 | | x=113-113=180 | | 101+(x+29)=180 | | 2(x-7)=4x+5(3x-7) | | -I-14-18i=14i-4 | | u/8+46=48 | | x=7+19 | | x-0.2x=29000 | | -4=-x/2 | | -2(p-6)=2 | | 11x+3-10x+10=180 | | 10p+8p=61 | | 158=47-y | | 6x-24=-8(8-2x) | | N(x)=x+5 | | 16x+10=75 | | 10x+10-11x+3=180 | | 3.2x=-25.6 | | 7/4g-2=-5 | | -v/2=1 | | 9(11-n)=3(3n-9)9(11−n)=3(3n−9) | | 11+5x=134 | | 11-3t=20 | | 13x-10=32 | | 8(z-4)=64 | | 3(b+13)=-10b | | 6y-70=68 | | 18-2=10w+14 | | -5=c+7/2 | | 4(6y-5)=3(9y+1) | | 40=13u-8u |