If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10(x-20)(2x-20)=8320
We move all terms to the left:
10(x-20)(2x-20)-(8320)=0
We multiply parentheses ..
10(+2x^2-20x-40x+400)-8320=0
We multiply parentheses
20x^2-200x-400x+4000-8320=0
We add all the numbers together, and all the variables
20x^2-600x-4320=0
a = 20; b = -600; c = -4320;
Δ = b2-4ac
Δ = -6002-4·20·(-4320)
Δ = 705600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{705600}=840$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-600)-840}{2*20}=\frac{-240}{40} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-600)+840}{2*20}=\frac{1440}{40} =36 $
| 3-a/17=-2 | | 5x-3(2-x)=-(x-1)+6x-3 | | 63x^2-3x-8=0 | | 6x+x2=0 | | -207=5(3+8b)-3b | | 9.1/x-57=1.4 | | 146=3n+4(-6n+5) | | 24/60=(x+5)/(4x-1) | | 96=2(7-5x)+2 | | 7(1+4k)=-217 | | p^2–8p=35 | | p2–8p=35 | | x=2x-4/5x-1 | | t^2-10t-200=0 | | 2x+3+x+4=2 | | 7/2x-3=2/3x+5 | | 5^x=25^x+2 | | 4(x+7)–5x=6–2x | | 9x^2+21x^2=34^2 | | 4(-5v-7)=-188 | | 2x+3÷x+4=2 | | x=12/13 | | (x*x)+(x*9/21)^2=34^2 | | -2x-14+5=-6x-14-1 | | 9^(x)=3^(x)+6 | | 4x+10+4=6x+10-10 | | 3x+1+7=6x+1+6 | | 2-3t^2=0 | | 2x2-x-3=-x+5 | | (x+5)(x-4)=30 | | x2-3=-x+3 | | -2(1+7a)-2a=-130 |