10+(2/3*x)=x

Simple and best practice solution for 10+(2/3*x)=x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10+(2/3*x)=x equation:



10+(2/3x)=x
We move all terms to the left:
10+(2/3x)-(x)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3x)-x+10=0
We add all the numbers together, and all the variables
-1x+(+2/3x)+10=0
We get rid of parentheses
-1x+2/3x+10=0
We multiply all the terms by the denominator
-1x*3x+10*3x+2=0
Wy multiply elements
-3x^2+30x+2=0
a = -3; b = 30; c = +2;
Δ = b2-4ac
Δ = 302-4·(-3)·2
Δ = 924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{924}=\sqrt{4*231}=\sqrt{4}*\sqrt{231}=2\sqrt{231}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{231}}{2*-3}=\frac{-30-2\sqrt{231}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{231}}{2*-3}=\frac{-30+2\sqrt{231}}{-6} $

See similar equations:

| 10+(2/3*x)=1x | | 12x=18+9.6 | | 180=10+x+(2/3*x) | | 21-4n=7+3n | | 21-4n=73n | | 3x+6-8x=56 | | 12x=12=9.6 | | 4y-3=61 | | 3x-20=-6 | | X+10+3x-50+x=180 | | 4(r+80)=(1/5)(20r+400) | | U^2-4u+4U=0 | | 3x+41=9x+5 | | 4a-2=3a=7 | | 6x-5(6x+39=-75 | | 11.4=4x | | 5n-6=3n | | Y=39-4c | | 2.6x+7.2-1.4x=14.4 | | 6x-3+5x+18=125 | | -15=k+6 | | -1/3-x=x-9 | | 90+8x-4+4x+22=180 | | u^2+2u-120=0 | | 10x+2=-48 | | 18+.8x=9+.12x | | 3.508=9.7−z·2.4 | | -3(x-4)=4x-2 | | 3f=4 | | 5x=(x+1)=5-2x | | u^2-21u+90=0 | | 10x-9=-129 |

Equations solver categories