10+(5/x)+(3/3x)=11

Simple and best practice solution for 10+(5/x)+(3/3x)=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10+(5/x)+(3/3x)=11 equation:



10+(5/x)+(3/3x)=11
We move all terms to the left:
10+(5/x)+(3/3x)-(11)=0
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+5/x)+(+3/3x)+10-11=0
We add all the numbers together, and all the variables
(+5/x)+(+3/3x)-1=0
We get rid of parentheses
5/x+3/3x-1=0
We calculate fractions
15x/3x^2+3x/3x^2-1=0
We multiply all the terms by the denominator
15x+3x-1*3x^2=0
We add all the numbers together, and all the variables
18x-1*3x^2=0
Wy multiply elements
-3x^2+18x=0
a = -3; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·(-3)·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*-3}=\frac{-36}{-6} =+6 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*-3}=\frac{0}{-6} =0 $

See similar equations:

| 1.5+1.5y+y=99 | | 640=a+2.5 | | 4/9x+1/5x=87 | | -3=x-16 | | 16z^2-14z-15=0 | | 2y–4=3y–5 | | 4/7x+5/14x=39 | | 7*(3-2x)+3x=x+4*(x-1) | | 5+31/2s+20=65 | | 2/5f-5/4=8/5 | | -7(3-x)=14(x-1) | | 4^x=64 | | 2+x/9=26 | | 4(x-2)ˇ-x(4x-13)=-5 | | 9+4/3=8+y | | 9/4=y/12 | | -27-x=5x-3 | | 18x-6-14x=2(2x-4)+2 | | 44-5r+4=44+3r | | 3y–5=y+2y–9 | | y/3+4=38 | | k/21=8 | | -5=-(x5) | | 4(x-2)-x(4x-13)=-5 | | m-18=-33 | | 1/2t+9=44 | | 2-(2x-1)=11-x | | 13-2g=3 | | v​2​​=​81​​25​​ | | 120=5x+5x+16 | | x^-2-9x^-1-10=0 | | n-19=-17 |

Equations solver categories