10+.5w=1/2w-10

Simple and best practice solution for 10+.5w=1/2w-10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10+.5w=1/2w-10 equation:



10+.5w=1/2w-10
We move all terms to the left:
10+.5w-(1/2w-10)=0
Domain of the equation: 2w-10)!=0
w∈R
We get rid of parentheses
.5w-1/2w+10+10=0
We multiply all the terms by the denominator
(.5w)*2w+10*2w+10*2w-1=0
We add all the numbers together, and all the variables
(+.5w)*2w+10*2w+10*2w-1=0
We multiply parentheses
2w^2+10*2w+10*2w-1=0
Wy multiply elements
2w^2+20w+20w-1=0
We add all the numbers together, and all the variables
2w^2+40w-1=0
a = 2; b = 40; c = -1;
Δ = b2-4ac
Δ = 402-4·2·(-1)
Δ = 1608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1608}=\sqrt{4*402}=\sqrt{4}*\sqrt{402}=2\sqrt{402}$
$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-2\sqrt{402}}{2*2}=\frac{-40-2\sqrt{402}}{4} $
$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+2\sqrt{402}}{2*2}=\frac{-40+2\sqrt{402}}{4} $

See similar equations:

| 1/5x=22/3 | | 90=(-5x+55)+(9x+3) | | 42a+160=622 | | 840+17m=760+22m | | 180-176x3/6+11=0 | | 4(32-3x)=2 | | 10(r+5)=-30 | | x(.25)=3 | | x(.25)=4 | | 3x+1=12+x-6 | | 2x+8=0-3x | | x(.25)=6 | | 8x^2=43x+30 | | 4(2x-1)=6x-10 | | x(.25)=12 | | X-(2x-1)=28 | | 56/w-2=3 | | 25+30m=65+20m | | 4z+6=2z+10 | | 11=17-6w | | 3x-4=7-3x | | 3/12+3/x=5/8 | | 5(b+28)=150 | | 7(m+10)=154 | | x2–1=x+1 | | 5/8=q/14 | | -12m+4=76 | | 4m-11=17 | | 1/4x=3x-12 | | 3x+1=6(2)+x-6 | | 684=2x^2+18x | | 3x=4x+ |

Equations solver categories