If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10+x2=60
We move all terms to the left:
10+x2-(60)=0
We add all the numbers together, and all the variables
x^2-50=0
a = 1; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·1·(-50)
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*1}=\frac{0-10\sqrt{2}}{2} =-\frac{10\sqrt{2}}{2} =-5\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*1}=\frac{0+10\sqrt{2}}{2} =\frac{10\sqrt{2}}{2} =5\sqrt{2} $
| 2b-84=180 | | c+10=93 | | (5/7(b-3)^2-30)=0 | | 18+3y=-21 | | 8z-1-4=11 | | 7x+9x-42=84-5x | | y=40-5 | | 2y–3y=9 | | 5x-14+2x-9=x-5 | | 13=3z+4 | | 4+-3c=7 | | 7c-77=2c-17 | | 40x=2000 | | w/16=29 | | 3x+23=10x+9 | | 5x-14+x-5=2x-9 | | 105n-83/20(130-12.5n)103+392/39(1092/403-1.5n)=1043.923 | | 5c-24=2c | | 3/x=4.5 | | 2(w-4)=5w-11 | | 2p=p+43 | | 22f=4 | | 105n-83/20(130-12.5n)204/136.20-10+18(1092/403-1.5n)=1043.923 | | y=2+14 | | w+64=w | | 2p=4+p3 | | 11x-2x+60=11x+38 | | x+60+25=180 | | 7/k=595 | | 4(x-8)+9x-3=3(x-7)-3 | | 5−4y=−10 | | (2y-12)/(3y-12)=0 |