10+x=5*1/5x+2

Simple and best practice solution for 10+x=5*1/5x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10+x=5*1/5x+2 equation:



10+x=5*1/5x+2
We move all terms to the left:
10+x-(5*1/5x+2)=0
Domain of the equation: 5x+2)!=0
x∈R
We get rid of parentheses
x-5*1/5x-2+10=0
We multiply all the terms by the denominator
x*5x-2*5x+10*5x-5*1=0
We add all the numbers together, and all the variables
x*5x-2*5x+10*5x-5=0
Wy multiply elements
5x^2-10x+50x-5=0
We add all the numbers together, and all the variables
5x^2+40x-5=0
a = 5; b = 40; c = -5;
Δ = b2-4ac
Δ = 402-4·5·(-5)
Δ = 1700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1700}=\sqrt{100*17}=\sqrt{100}*\sqrt{17}=10\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-10\sqrt{17}}{2*5}=\frac{-40-10\sqrt{17}}{10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+10\sqrt{17}}{2*5}=\frac{-40+10\sqrt{17}}{10} $

See similar equations:

| M/4=-13m= | | (18x-9)=(2x+15) | | -17x=-204x= | | 0.2x-33=8.5x-37 | | -15x=0x= | | 16=k/11k= | | 2x+1-4=-2x+3 | | x/6+4/5=9 | | 20X+2=y | | -3(x)=3(x)-8 | | -4(2x-7)=-8x-28 | | 4.7x-9=0 | | 20X+2=u | | 2x+8.4=18 | | 5x+4=7x-34 | | 10n=40n= | | 0.06(y-4)+0.02y=0.16y-0.06 | | 14b=-56b= | | 4-10(3n-2)=-6(n+8) | | N+16=9n= | | 4.7x–9= | | V-15=-27v= | | 0.6x-10=8x-54.4 | | 0.5x−9=7.5+6x | | -5+8=-3x+12 | | P-6=-5p= | | -6=b/18B= | | 7x-2(x-4)=3x-10 | | 4x+6=13-x | | 4.7x–9=0 | | x3+11x2+38x+40=0 | | -8x-11=-8x+23 |

Equations solver categories