10,111.99=7,750(1+x)x9

Simple and best practice solution for 10,111.99=7,750(1+x)x9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10,111.99=7,750(1+x)x9 equation:



10.111.99=7.750(1+x)x9
We move all terms to the left:
10.111.99-(7.750(1+x)x9)=0
We add all the numbers together, and all the variables
-(7.750(x+1)x9)+10.111.99=0
We add all the numbers together, and all the variables
-(7.750(x+1)x9)+10.00989=0
We calculate terms in parentheses: -(7.750(x+1)x9), so:
7.750(x+1)x9
We multiply parentheses
7x^2+7x
Back to the equation:
-(7x^2+7x)
We get rid of parentheses
-7x^2-7x+10.00989=0
a = -7; b = -7; c = +10.00989;
Δ = b2-4ac
Δ = -72-4·(-7)·10.00989
Δ = 329.27692
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{329.27692}}{2*-7}=\frac{7-\sqrt{329.27692}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{329.27692}}{2*-7}=\frac{7+\sqrt{329.27692}}{-14} $

See similar equations:

| 5x-31=-8x-18 | | 1x-10=5+5 | | 0.75x+2.5=8.5 | | |y-2|=5 | | 6x²+3x-5=0 | | -3(k-8)-(k+5)=23 | | 5(w+7)=-5w+15 | | 50x+12=200 | | 5x-23=-9(x+1) | | 4yy=5 | | 13p-20=12+18p-7p | | m·64=12 | | -5=4p-5+p | | 7a+12=8a+a | | (3x)^3=100 | | 4+15+11p=-11+11p | | 7.6(a+5)+17=100.5 | | -8u+5(u-2)=-19 | | 7(2x+20)=-140 | | 2x+4.3=7.5 | | 3x-9-2x=-13 | | 19+11t=11t+17 | | 32+2x=10x | | 7t-7=-2+7t | | 7.4a=60.68 | | 112=x/16 | | 8c+6=6+16c | | 2+3+4x=6 | | 5(x+9)=2(12x+13) | | 0=-x-13+2 | | c-73=43.2 | | a+83=237 |

Equations solver categories