10-1/3x=1/6x+5

Simple and best practice solution for 10-1/3x=1/6x+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10-1/3x=1/6x+5 equation:



10-1/3x=1/6x+5
We move all terms to the left:
10-1/3x-(1/6x+5)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 6x+5)!=0
x∈R
We get rid of parentheses
-1/3x-1/6x-5+10=0
We calculate fractions
(-6x)/18x^2+(-3x)/18x^2-5+10=0
We add all the numbers together, and all the variables
(-6x)/18x^2+(-3x)/18x^2+5=0
We multiply all the terms by the denominator
(-6x)+(-3x)+5*18x^2=0
Wy multiply elements
90x^2+(-6x)+(-3x)=0
We get rid of parentheses
90x^2-6x-3x=0
We add all the numbers together, and all the variables
90x^2-9x=0
a = 90; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·90·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*90}=\frac{0}{180} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*90}=\frac{18}{180} =1/10 $

See similar equations:

| x2+1/4=1/2 | | X+13=14x | | 10m-6=44 | | (5x-7)^2-6x(7-5x)=0 | | x+3.50=6 | | 6^(x-1)=54 | | 1/8x=2/5÷1/20 | | 217=36x | | 7-3x=23-3x | | (5x+5)°+(9x+9)=180 | | 2a^2+16a+12=0 | | 4^(2x+1)=8^(x-2) | | 40z+10-28-49=7z+20-17z | | (8+x)x=148 | | 2(3-4x)-1=(-19) | | M-6=3m-1 | | 5*2^(3x-1)=30 | | 3,4x+13=30 | | 4(6×-1)=6(3x+5) | | (2-x)(-3)-(4(3x-1))=0 | | (2-x)(-3)=4(3x-1) | | (2-x)3=4(3x-1) | | (2-x)*3=4*(3x-1) | | Z(10+z)=7z | | 14x+10=48–12x | | 3y-2=2+2y | | 3x/4+5=12 | | 9x—7/5x—8=—⅔ | | x+6/x-4=11 | | -1/3(6/5−9b)+b=2b−(b+1) | | -8x+4=-25+1 | | 9x-5=7+4x |

Equations solver categories