If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10-3t=t2
We move all terms to the left:
10-3t-(t2)=0
We add all the numbers together, and all the variables
-1t^2-3t+10=0
a = -1; b = -3; c = +10;
Δ = b2-4ac
Δ = -32-4·(-1)·10
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-7}{2*-1}=\frac{-4}{-2} =+2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+7}{2*-1}=\frac{10}{-2} =-5 $
| 8=3x-114 | | (x-2)^=36 | | 442=550-k(1) | | 442=550-k1 | | x+79°=2x-37° | | 8(3y-2)=3(10-y)+35 | | 3x-1=3.5 | | 2(1-4x)=(-1/2x) | | -2.5x+57.9=15.9+1.8x | | 3x-1*8=28 | | 2n(5n-3)=0 | | 3x²+10x+8=0 | | 100p-7500=0.3*100p | | 8-9+10-6=b | | 2x0.2=4x-0.6 | | 4x^2+10x-144=0 | | 3=5+2u | | 16x-4+9x-6+54=180 | | 10+5*2=y | | (q+5)^2+3q^2=169 | | 2r-3+9=r | | −3(−2x−2)−3x+5=22 | | 35x=14x+5 | | 1x+5=70 | | x+2=√2x+7 | | 5x-7=19x | | 5x+3x–4=10 | | 19x=5x-7 | | 3y+1+18.1=180 | | 2x+22+3x+5x-14=180 | | (1/2x)+.4=(1/3x)+3/4 | | 80-6x+0.1x^2=0 |