If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10-4y^2=2
We move all terms to the left:
10-4y^2-(2)=0
We add all the numbers together, and all the variables
-4y^2+8=0
a = -4; b = 0; c = +8;
Δ = b2-4ac
Δ = 02-4·(-4)·8
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*-4}=\frac{0-8\sqrt{2}}{-8} =-\frac{8\sqrt{2}}{-8} =-\frac{\sqrt{2}}{-1} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*-4}=\frac{0+8\sqrt{2}}{-8} =\frac{8\sqrt{2}}{-8} =\frac{\sqrt{2}}{-1} $
| 12=-5y+2(y-3) | | 30=8(u+5)+2u | | M²+6m+8=0 | | 4(x-7)+4x=20 | | 6=-4w+(w+6) | | (×+20)=(4x+2) | | x+30/50=30/25 | | 1/2(x+1)+1/4=2/3x+3/4 | | 3/5x+10=17 | | 5y+80=3y+20 | | -7+10x=87 | | 5+x+3/2=1 | | q^2-20q-108=0 | | 8(5k+8)-3k=-121 | | 10=7a | | 2(5(5)-4)=x | | 4p/7=4 | | 62=32-5(x-2) | | -8p/5=16 | | 11x-15=6x+40 | | (4(x-8))/5=-2(3x+1)+2/5 | | 2(5x-4)=3x+27 | | -7p/2=21 | | 2x+22=-6(x-1) | | 4(w-9)=-6w+34 | | 8t^2-16t+20=0 | | -7u-31=9(u+9) | | 6v+68=180 | | -7u-4=10 | | 24=-6y+4(y+5) | | -27=3(w-8)-6w | | (6x)=0 |