If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10.2+18.18y(0.00733-y)=100-73.53y(1+y)
We move all terms to the left:
10.2+18.18y(0.00733-y)-(100-73.53y(1+y))=0
We add all the numbers together, and all the variables
18.18y(-1y+0.00733)-(100-73.53y(y+1))+10.2=0
We multiply parentheses
-18y^2+0.13194y-(100-73.53y(y+1))+10.2=0
We calculate terms in parentheses: -(100-73.53y(y+1)), so:We get rid of parentheses
100-73.53y(y+1)
determiningTheFunctionDomain -73.53y(y+1)+100
We multiply parentheses
-73y^2-73y+100
Back to the equation:
-(-73y^2-73y+100)
-18y^2+73y^2+73y+0.13194y-100+10.2=0
We add all the numbers together, and all the variables
55y^2+73.13194y-89.8=0
a = 55; b = 73.13194; c = -89.8;
Δ = b2-4ac
Δ = 73.131942-4·55·(-89.8)
Δ = 25104.280648164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(73.13194)-\sqrt{25104.280648164}}{2*55}=\frac{-73.13194-\sqrt{25104.280648164}}{110} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(73.13194)+\sqrt{25104.280648164}}{2*55}=\frac{-73.13194+\sqrt{25104.280648164}}{110} $
| -4n-28=-7(4-5n) | | 7(1-5k)=8k-36 | | 14x-127=5x-10 | | y^2-55y+30=0 | | 82.64+13.33y(0.015201-y)=100-5.97y(1+y) | | 34/6=c/57 | | x+(x+1)+2(x+3)=18 | | -26+4x=-52+4x | | x+(x+1)+2(x+2)=18 | | 65.36+21.74y(0.004856-y)=100-14.49y(1+y) | | -6(x-5)=22-6x | | x+(-8)=-18 | | -7a-20=3-6(7a-2) | | 3(k+6)=5(k+2) | | 6a-23=-8(-4-8a)-3a | | 3x+2+3x+6=-76 | | -17+2x=5(-6x+3) | | 6x+8=-76 | | -x+28=-8x-3(1+8x) | | 3(b+4)+1=b+25 | | 100=w(20-10)/5 | | 2x+x+3x+6x=180 | | 5x+9=45x= | | -(1-3k)=-5+3k | | 75.19+17.86y(0.008565-y)=100-8.7y(1+y) | | 7+x15=-2 | | 4a+2=6(a+3) | | 4x-15=6x-15 | | 3(5x-1)=2(x-2)+11 | | x+10*x=99 | | -3n=-(2n-2) | | -37+6v=-7(1-3v) |