If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10/2y+15(-2y+3y)=220y
We move all terms to the left:
10/2y+15(-2y+3y)-(220y)=0
Domain of the equation: 2y!=0We add all the numbers together, and all the variables
y!=0/2
y!=0
y∈R
10/2y+15(+y)-220y=0
We add all the numbers together, and all the variables
-220y+10/2y+15(+y)=0
We multiply parentheses
-220y+10/2y+15y=0
We multiply all the terms by the denominator
-220y*2y+15y*2y+10=0
Wy multiply elements
-440y^2+30y^2+10=0
We add all the numbers together, and all the variables
-410y^2+10=0
a = -410; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-410)·10
Δ = 16400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{16400}=\sqrt{400*41}=\sqrt{400}*\sqrt{41}=20\sqrt{41}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{41}}{2*-410}=\frac{0-20\sqrt{41}}{-820} =-\frac{20\sqrt{41}}{-820} =-\frac{\sqrt{41}}{-41} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{41}}{2*-410}=\frac{0+20\sqrt{41}}{-820} =\frac{20\sqrt{41}}{-820} =\frac{\sqrt{41}}{-41} $
| 0.25x-0.31=1.44 | | 85=4x+19 | | 0=2500-400x+8x^2 | | 4m+12=6m+10 | | s-21.5=-16 | | 27=2b+(7+b) | | -13b+b+16b-14b+17b=14 | | 5x+4=11 | | 7=8x=-14+x | | b+2b=b-10b | | 26x+115=180 | | 125=6+17x | | n/5-9n/1=1/5 | | 5w+2w-w-3w-2w=3 | | 2x+17-7x=-13 | | 40x+30*8=720 | | 4(-4+4n)=96 | | 3(x+7)=-30 | | -7z-2z-6z+17z=-18 | | 2x/5+1=5 | | -2+7y=-11 | | 4x+16=5x+5 | | 30x-140x=-880 | | n/5-9n/5=1/5 | | 5y-3y+5=11 | | 25x=100x | | 4v+13=81 | | 5x+40=12x-20 | | 4y+y^2=108 | | 3z+5=42 | | a/5+7=16 | | -18=4v |