10/x+10=12/2x

Simple and best practice solution for 10/x+10=12/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10/x+10=12/2x equation:



10/x+10=12/2x
We move all terms to the left:
10/x+10-(12/2x)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
10/x-(+12/2x)+10=0
We get rid of parentheses
10/x-12/2x+10=0
We calculate fractions
20x/2x^2+(-12x)/2x^2+10=0
We multiply all the terms by the denominator
20x+(-12x)+10*2x^2=0
Wy multiply elements
20x^2+20x+(-12x)=0
We get rid of parentheses
20x^2+20x-12x=0
We add all the numbers together, and all the variables
20x^2+8x=0
a = 20; b = 8; c = 0;
Δ = b2-4ac
Δ = 82-4·20·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8}{2*20}=\frac{-16}{40} =-2/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8}{2*20}=\frac{0}{40} =0 $

See similar equations:

| 10+8z=-9+10+5 | | 5(x-2=2(10+x) | | -8q-6=6q-6 | | 7/3=v/5 | | )5(x-2=2(10+x) | | -1+2b=7b-6 | | 5n+7=-9+3n | | (3x+19)+(5x+20)+45=180 | | 6(y-3)=2y-2 | | -6(2x+1)=-78 | | -7+3w=2w | | (7x+8)+(7x+5)+41=180 | | 7x–18=4x+54 | | 2+7n=5n | | y+0.4y=40 | | -4-6j=-10j | | y-0.4y=40 | | -2+6y=7y | | 29=8x=5-2x | | 2.2(x+4)=2x+18+x | | 5v=8v-6 | | 5(x-2)-12=2(10+x)-3x | | 4∣x−3∣+9=41 | | 1)-4(3-6k)+3=-81 | | 81/3=3x-2 | | (8x+11)=14x-1 | | 5x-21(x-6)=2 | | 4K=5k+3 | | 6t-6=5t | | 7g+1=6g-9 | | r=8,r=-3 | | 6-48x=10 |

Equations solver categories