10/x+11=25/6x+3

Simple and best practice solution for 10/x+11=25/6x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10/x+11=25/6x+3 equation:



10/x+11=25/6x+3
We move all terms to the left:
10/x+11-(25/6x+3)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 6x+3)!=0
x∈R
We get rid of parentheses
10/x-25/6x-3+11=0
We calculate fractions
60x/6x^2+(-25x)/6x^2-3+11=0
We add all the numbers together, and all the variables
60x/6x^2+(-25x)/6x^2+8=0
We multiply all the terms by the denominator
60x+(-25x)+8*6x^2=0
Wy multiply elements
48x^2+60x+(-25x)=0
We get rid of parentheses
48x^2+60x-25x=0
We add all the numbers together, and all the variables
48x^2+35x=0
a = 48; b = 35; c = 0;
Δ = b2-4ac
Δ = 352-4·48·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1225}=35$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-35}{2*48}=\frac{-70}{96} =-35/48 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+35}{2*48}=\frac{0}{96} =0 $

See similar equations:

| 12h-33=h | | 4x+1.5=55 | | 25=5t-10 | | -8=9x-4 | | 7x+8x+2=18x-26-8 | | -1/4w+6=9 | | 12p+45=15p | | (4x−14)+(x−1)+(6x+8)=180 | | 1/4x+(-8)=20 | | 10x+6=-8x-12 | | 3/x=4/100 | | 2j5=1 | | 2x+5x-8=2(5+x)20 | | z4+4z3+9z2−16z−52=0 | | 7/6c-6=-20 | | 19+19=3x+14 | | 12+4x=6x+10-x2 | | 3x+12=(-12) | | x(14+3)=2x–30 | | 47=2+5x | | 1/4+p=2 | | 49+46+28x+1=180 | | 9x÷5=+32 | | 6x+7+44+4x+19=180 | | 3x+4+72+5x+8=180 | | 18.765m-25=13.4 | | 13x+5x+12x=60 | | 84+x+64=180 | | 2=3/x-19 | | 2.4x=1.8x+37.44 | | 6x-6+9x+6=180 | | 12x+1=9x+13 |

Equations solver categories