If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1000=(80-2x)(60-2x)
We move all terms to the left:
1000-((80-2x)(60-2x))=0
We add all the numbers together, and all the variables
-((-2x+80)(-2x+60))+1000=0
We multiply parentheses ..
-((+4x^2-120x-160x+4800))+1000=0
We calculate terms in parentheses: -((+4x^2-120x-160x+4800)), so:We get rid of parentheses
(+4x^2-120x-160x+4800)
We get rid of parentheses
4x^2-120x-160x+4800
We add all the numbers together, and all the variables
4x^2-280x+4800
Back to the equation:
-(4x^2-280x+4800)
-4x^2+280x-4800+1000=0
We add all the numbers together, and all the variables
-4x^2+280x-3800=0
a = -4; b = 280; c = -3800;
Δ = b2-4ac
Δ = 2802-4·(-4)·(-3800)
Δ = 17600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{17600}=\sqrt{1600*11}=\sqrt{1600}*\sqrt{11}=40\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(280)-40\sqrt{11}}{2*-4}=\frac{-280-40\sqrt{11}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(280)+40\sqrt{11}}{2*-4}=\frac{-280+40\sqrt{11}}{-8} $
| 9.5y+8-2=19.5 | | w+5/8=-1/4 | | 7x+3x-15=124 | | 2(d+3(d-1))=18 | | 3x+52x=12+4x | | 5k+5=4k+4 | | -2(x=1)+5x=3(x=1)-2 | | 3x+48=7(x+4) | | -9(w+7)=7w-31 | | -7u-27=-4(u+9) | | -0.06×+0.04y=0.08,0.04×+0.06y=0.12 | | 4(2×-1)=2(x+1) | | 15-b=-2/3 | | 4(2×-1)=2x(x+1) | | -2h2+11h+21=0 | | 1.6^x-4=5^3x | | -12×+8=8x-22 | | 5n^2-45n=0 | | x-((2/3)x)+16=25 | | 68-12x=-220 | | 2/3x+7+1/6x=12 | | 10y-1=5y+21 | | -18=5(y-6)-2y | | 3x+63+42-(180)=0 | | -9=8(v+7)+5v | | 2x-2(-x+5)=x+(-4) | | (8/27)^x=2/3 | | 3b^2-3b=18 | | -1=x+2+3 | | 4x-2(-1)=11 | | 3x+63+42=180 | | 2x-2(-x+5)=x+4 |