If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1000x(9x-10)=50(976+100x)
We move all terms to the left:
1000x(9x-10)-(50(976+100x))=0
We add all the numbers together, and all the variables
1000x(9x-10)-(50(100x+976))=0
We multiply parentheses
9000x^2-10000x-(50(100x+976))=0
We calculate terms in parentheses: -(50(100x+976)), so:We get rid of parentheses
50(100x+976)
We multiply parentheses
5000x+48800
Back to the equation:
-(5000x+48800)
9000x^2-10000x-5000x-48800=0
We add all the numbers together, and all the variables
9000x^2-15000x-48800=0
a = 9000; b = -15000; c = -48800;
Δ = b2-4ac
Δ = -150002-4·9000·(-48800)
Δ = 1981800000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1981800000}=\sqrt{360000*5505}=\sqrt{360000}*\sqrt{5505}=600\sqrt{5505}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15000)-600\sqrt{5505}}{2*9000}=\frac{15000-600\sqrt{5505}}{18000} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15000)+600\sqrt{5505}}{2*9000}=\frac{15000+600\sqrt{5505}}{18000} $
| 7x+17=6x-4 | | 4n+16=10.4 | | -3/5=(-3x-9)/x^2-5x+4 | | 8w-5+4=35 | | 3a-7(4)=4+5(3) | | 3x-2=17x-8 | | 5x-5=11x+8 | | 2x+1=10x+2 | | 7x-13)=(4x+5) | | 0.5(x)(x+4)=30^2 | | -4+15x=21 | | -7x+19=180 | | 4.4y+3.74-3.3y=0.7y-0.02 | | 0.5(x)(x+4)=30 | | (3/(x+2))+(7/9x+1))=(3/(x^2=3x+2)) | | 3(3x=5)=7x+5 | | -6.97-4n=9.83+2n | | −7=5/6a | | 36-x^2=-9 | | 6-3j=-2j | | 2604=6r*3r+r | | 16x^2+35=35 | | x=9-0.8x=5.2x+17-8 | | 14x.2x=0 | | 0.10(y-2)+0.12=0.18y-0.01(40) | | -4.9(x-1.25)^2+9=0 | | 42=6x+60 | | 2a-6=16-a | | 6e–5=8e–7 | | x=2*5^x+4 | | -0.4=-3.5k+2.9 | | 6-0.2x=2(6-0.6x) |