If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=(x+28+x)(x+15+x)
We move all terms to the left:
100-((x+28+x)(x+15+x))=0
We add all the numbers together, and all the variables
-((2x+28)(2x+15))+100=0
We multiply parentheses ..
-((+4x^2+30x+56x+420))+100=0
We calculate terms in parentheses: -((+4x^2+30x+56x+420)), so:We get rid of parentheses
(+4x^2+30x+56x+420)
We get rid of parentheses
4x^2+30x+56x+420
We add all the numbers together, and all the variables
4x^2+86x+420
Back to the equation:
-(4x^2+86x+420)
-4x^2-86x-420+100=0
We add all the numbers together, and all the variables
-4x^2-86x-320=0
a = -4; b = -86; c = -320;
Δ = b2-4ac
Δ = -862-4·(-4)·(-320)
Δ = 2276
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2276}=\sqrt{4*569}=\sqrt{4}*\sqrt{569}=2\sqrt{569}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-86)-2\sqrt{569}}{2*-4}=\frac{86-2\sqrt{569}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-86)+2\sqrt{569}}{2*-4}=\frac{86+2\sqrt{569}}{-8} $
| 4+7x-10+x-6x=16 | | 1/21+x+2/3=-1/7 | | 24+2x=3x+2(3•4) | | 1/21x+2/3=-1/7 | | 1/x=3x/8x+3 | | -3(y-5y)+7=-2(2y-y)+9+13y | | 6x-8=12-3x | | -2(x+5)+5=6(x+4)+5 | | 50=x-9-140 | | 6(a-7)+30=2(a-4) | | 4.5x=56.25 | | (x)=-16x^2+400 | | 16x^2+8Y^2=288 | | Y=30+45x | | 7-q/4=9 | | -4(9x-2)=7 | | 7(3x+4)=(-2)(2x-11) | | 5^5x-3=40 | | 0.2y+0.8=0.3-0.3y | | -k^2-11k-8=0 | | x/4+8=-4 | | 2(x=-4)+7=3 | | -2y•7=4y•(5•5)-798 | | 6(n+7)+n=-7(-6+5n) | | 6x+6(3x-19)=6 | | 5x/3+1/2=4 | | x/2-32=10 | | 2x/3+1/2=4 | | 128=2^x | | 7/2x+4=-10 | | (x^2+49)-49=0 | | 343x=7x-8 |