100=1/2(4x)(2x)

Simple and best practice solution for 100=1/2(4x)(2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=1/2(4x)(2x) equation:



100=1/2(4x)(2x)
We move all terms to the left:
100-(1/2(4x)(2x))=0
Domain of the equation: 24x2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-(+1/24x2x)+100=0
We get rid of parentheses
-1/24x2x+100=0
We multiply all the terms by the denominator
100*24x2x-1=0
Wy multiply elements
2400x^2-1=0
a = 2400; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·2400·(-1)
Δ = 9600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9600}=\sqrt{1600*6}=\sqrt{1600}*\sqrt{6}=40\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{6}}{2*2400}=\frac{0-40\sqrt{6}}{4800} =-\frac{40\sqrt{6}}{4800} =-\frac{\sqrt{6}}{120} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{6}}{2*2400}=\frac{0+40\sqrt{6}}{4800} =\frac{40\sqrt{6}}{4800} =\frac{\sqrt{6}}{120} $

See similar equations:

| 1/2y-2=-16 | | 2(x+1+4=8 | | 10+7q+2q+3=6q+1+5q | | 1/3(y+4)+6=1/4(3y-1)2 | | 50r+20+40r=182 | | 5(2+x)=4(x-6) | | t/7-2=1 | | 3-7n=9n+51 | | 2=3r-10 | | 1/2y+4=-16 | | 5-7q=9q+5 | | -3|p|=-12 | | 8-8(1+3)=23-x | | -43=7(4x-7)-(8x-6) | | 4/3+3m/7=43/21 | | y-13|19=-11|19 | | 2(5d+4)=1/4(9+d) | | 6+4r-2=9r+8-7r | | |2y+7|=5 | | 4k=30-k | | -5-116=3x+44 | | 3x+27=7x+1 | | -2.15+1.4n=1.88n-3.29 | | 15k+3=20k-4 | | 3/8+1/7t=2 | | 0.2m-0.9=-0.1=m | | -18=8b+4+3b-8 | | -8-5n=64=3n | | 11/4+1/5t=3 | | 3x+16=x-20 | | 62=3x2x+2 | | 2x+9+2x+8+2x=3x+3+2x+2x |

Equations solver categories