If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=144t-16t^2
We move all terms to the left:
100-(144t-16t^2)=0
We get rid of parentheses
16t^2-144t+100=0
a = 16; b = -144; c = +100;
Δ = b2-4ac
Δ = -1442-4·16·100
Δ = 14336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14336}=\sqrt{1024*14}=\sqrt{1024}*\sqrt{14}=32\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-32\sqrt{14}}{2*16}=\frac{144-32\sqrt{14}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+32\sqrt{14}}{2*16}=\frac{144+32\sqrt{14}}{32} $
| (5t)+(t)=(132) | | v-($0.65+$5.47)=$8.53 | | 24a-3(2a-5)=45 | | g+4g+g+4g=20 | | 7b-4b-2b+4b+3b=8 | | 5-2(5x+7)=21 | | 162+424=n | | 5j-4j+2j=15 | | u-$4.87=$.12 | | n×1/5=2/15 | | 9m-7m+3=5 | | (10p)*21=1,890 | | x+1.2x=55 | | w-w+w-w+2w=14 | | 2(3y+7)+4y=6 | | 11k-11k+k=3 | | 8k+2-5k=14 | | 29x+3+48x+3=57 | | 16t+2t-12t-3t=18 | | 42=6a-6 | | 2•9=8+w | | 29x+3+483+3=57 | | 1−r=−5 | | Y=8*z=12 | | 10+32=-15x | | 4=4+y/3 | | 3(2x-5)=45-4x | | 8x+1=6x+23 | | 2x+50+x+85=135 | | 14s-11s+-13s=20 | | |5a+7|=|6a-7| | | 2y+5y-5y+2y=20 |