If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100b^2-9=0
a = 100; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·100·(-9)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*100}=\frac{-60}{200} =-3/10 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*100}=\frac{60}{200} =3/10 $
| -5b=92.5 | | X2+7x-228=0 | | 15v+16v=16 | | 5(–2c+6)= | | 80+(-130)=x | | 2−19n+14n=–5n−4 | | 8n+n-3n-n=10 | | 15(k+5)=10(k+4) | | 6y=9-8+6y | | -10+5=x | | f(10)=(10-10)^2 | | 2r-2r+r=20 | | 16+5r+19r=19r-19 | | -5x9=3 | | 7m-7m+2m-m+3m=12 | | 6q=–7+7q | | -92x=0 | | -3x-5=-5x+15 | | 21=m+13 | | 19+12j=13j | | 42=r/36 | | n÷3-6=18 | | 5+1/7k=-2 | | W=1/3x27 | | b+200=300 | | -15f-4=-16-17f | | (x-3)(x^2-5x+8)=0 | | 8w+3w+4w-13w=18 | | 5+(-2)=x | | 6-7p=20 | | 3w+7=2w-1 | | 16+7x^2=9 |