If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100x^2-10=15
We move all terms to the left:
100x^2-10-(15)=0
We add all the numbers together, and all the variables
100x^2-25=0
a = 100; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·100·(-25)
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10000}=100$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-100}{2*100}=\frac{-100}{200} =-1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+100}{2*100}=\frac{100}{200} =1/2 $
| 18=7+5x+6x | | 1/7x+6=14 | | 15/8=8u | | 2x-6=-6x+ | | 4(k−65)=52 | | 7x-3=2x+21 | | 6x×+12=6x+2 | | 6x+18-4=6×+2 | | w/2+2=14 | | 9m+3=7m-11 | | (7x-6)=180 | | 552=8(11x-1) | | 16−3k=7 | | (5x+30)+(7x-6)=180 | | –9x–4+7x=4–6x | | (2p-11)+(2p-12)+(2p-19)=180 | | 5x-5=3(2x-1)( | | v4−2=1 | | (x+55)=180 | | 104+(v+8)+(2v-13)=180 | | v4− 2=1 | | 35+2p+3p=180 | | 71+3a+(a+41)=180 | | 18.2+1.5x=9.68 | | (3x+10)+90=180 | | 33+48+(b-48)=180 | | 2t+3t+45=180 | | (3x+10)+(x-55)=180 | | (3x+10)-(x+55)=180 | | 6y^2-21y+12=0 | | (3x+10)-180=0 | | 4(6x-9.5)=64 |