1023=16t2

Simple and best practice solution for 1023=16t2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1023=16t2 equation:



1023=16t^2
We move all terms to the left:
1023-(16t^2)=0
a = -16; b = 0; c = +1023;
Δ = b2-4ac
Δ = 02-4·(-16)·1023
Δ = 65472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{65472}=\sqrt{64*1023}=\sqrt{64}*\sqrt{1023}=8\sqrt{1023}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{1023}}{2*-16}=\frac{0-8\sqrt{1023}}{-32} =-\frac{8\sqrt{1023}}{-32} =-\frac{\sqrt{1023}}{-4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{1023}}{2*-16}=\frac{0+8\sqrt{1023}}{-32} =\frac{8\sqrt{1023}}{-32} =\frac{\sqrt{1023}}{-4} $

See similar equations:

| 5.2b-12.24-17.56=13.8b+14.92 | | Y-8=-x-6 | | -z-13=-4-9-18z | | .6x+2=7 | | 5x-2(3x-8)=2(2x-7)+8x | | 9f=13+10f | | 14.56+14.9f=13.3f | | -5+12c=4+9c | | 7-6v=-3-8v | | -18u+20=-4-8u-12u | | 3.4h+9.65=-19.51+19.6h | | 4t=18+3t | | y=4/3(5)-1 | | 17r-20=19r+18 | | 19+11j-6=-19+9j | | 2n+1-6n=-3n+9 | | (3/20x-21/25)(10/87x+91/58)=0 | | -4z+7=-5z | | 7-u+3u=-5-19 | | 10+3r=-5-2r | | 10+9t=-2t-8+9t | | -7+5j=3j+7 | | 3x-1+8x-20=x | | 3-5x=3(5x+1)+5x | | 8x-10=3x+5+3(x-5) | | -9f+7=-3+5 | | -6-7g=-g+6 | | (2x-5)(5x+32)=0 | | 8v-4=7v | | -3u=u+8 | | -3p-8=-4p | | 8x-16=3x-8+4x |

Equations solver categories