102=x2+82

Simple and best practice solution for 102=x2+82 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 102=x2+82 equation:



102=x2+82
We move all terms to the left:
102-(x2+82)=0
We add all the numbers together, and all the variables
-(+x^2+82)+102=0
We get rid of parentheses
-x^2-82+102=0
We add all the numbers together, and all the variables
-1x^2+20=0
a = -1; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-1)·20
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-1}=\frac{0-4\sqrt{5}}{-2} =-\frac{4\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-1}=\frac{0+4\sqrt{5}}{-2} =\frac{4\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-1} $

See similar equations:

| 9m-19=3m+1;m=10/3 | | 134-d=14 | | -228=16n | | 12x2-15x=3(4x+15x) | | 3s*3s+6s+2=0 | | 2(-2y+7)=18 | | 25-n=200 | | 0.4x-5=7 | | 3x+2=2x+2*(x+3) | | 30x+10=30 | | -1=0.5x+9 | | 2x-30=42x-90 | | x+x/2+x=75 | | 5^3x-5^2x=5 | | 3x+2=2x+2*x+3 | | 2w-9.3=0.8w+5.1 | | 2x+x/2+x=75 | | -14x-13=111 | | 5(2x-8)-2=5(x-3)+8 | | 5^3x-4=5^2x+1 | | 2x-90=x-79 | | 12x=204= | | 2x-46=18 | | 5(2x-8-2=5(x-3)+8 | | 1/4(20d+12)=d+7 | | -14x-17=-45 | | 8x=120= | | x+0.2x=0.7 | | 2(x^2)+2x-399=0 | | 16+2n=3n | | 1/2b+3+3/2b=11+2b | | 4(5x+2)=-3(5x-4) |

Equations solver categories