104=(15-x)*(10-x)

Simple and best practice solution for 104=(15-x)*(10-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 104=(15-x)*(10-x) equation:



104=(15-x)(10-x)
We move all terms to the left:
104-((15-x)(10-x))=0
We add all the numbers together, and all the variables
-((-1x+15)(-1x+10))+104=0
We multiply parentheses ..
-((+x^2-10x-15x+150))+104=0
We calculate terms in parentheses: -((+x^2-10x-15x+150)), so:
(+x^2-10x-15x+150)
We get rid of parentheses
x^2-10x-15x+150
We add all the numbers together, and all the variables
x^2-25x+150
Back to the equation:
-(x^2-25x+150)
We get rid of parentheses
-x^2+25x-150+104=0
We add all the numbers together, and all the variables
-1x^2+25x-46=0
a = -1; b = 25; c = -46;
Δ = b2-4ac
Δ = 252-4·(-1)·(-46)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{441}=21$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-21}{2*-1}=\frac{-46}{-2} =+23 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+21}{2*-1}=\frac{-4}{-2} =+2 $

See similar equations:

| 81-x⁴=0 | | 7x-3(5x+2)=4 | | 104=(15-x)•(10-x) | | 19^(x^2-4x-21)=1 | | (3x-4)-(2x-2)=21 | | X^3-7x^2-x+87=0 | | 2x^2=5x-35 | | 104/3=5x-2x^2 | | 4(x-0,5)-2(x+0,3)=-2,6 | | 6(x-8)=9x30 | | 7-2(x+3)=13-6x | | 4(x2)=5x2 | | 5-x=1+5x | | 5x6=24 | | 0,3x+11=2 | | 2x²-8x-209=0 | | 4b^2-3b=8 | | 2x^2=5+√21 | | 2x+600=100 | | 5x+6=12x+3 | | 3x^2+4x=100 | | 2000+6x=200 | | 3s(5-2)=12.5 | | y/y+1÷2-2y-1÷3=2 | | 4(5x-2)=128 | | 2000=12x+350 | | 2x+8(x+8)•3=67 | | 6x-27+3x=13-x | | 6x-27+3=13-x | | y²+10+26=0 | | V=3.14r(2)6 | | 0.6y-(y)=0 |

Equations solver categories