If it's not what You are looking for type in the equation solver your own equation and let us solve it.
108=(x-6)(108/x+9)
We move all terms to the left:
108-((x-6)(108/x+9))=0
Domain of the equation: x+9))!=0We multiply parentheses ..
x∈R
-((+108x^2+9x-648x-54))+108=0
We calculate terms in parentheses: -((+108x^2+9x-648x-54)), so:We get rid of parentheses
(+108x^2+9x-648x-54)
We get rid of parentheses
108x^2+9x-648x-54
We add all the numbers together, and all the variables
108x^2-639x-54
Back to the equation:
-(108x^2-639x-54)
-108x^2+639x+54+108=0
We add all the numbers together, and all the variables
-108x^2+639x+162=0
a = -108; b = 639; c = +162;
Δ = b2-4ac
Δ = 6392-4·(-108)·162
Δ = 478305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{478305}=\sqrt{81*5905}=\sqrt{81}*\sqrt{5905}=9\sqrt{5905}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(639)-9\sqrt{5905}}{2*-108}=\frac{-639-9\sqrt{5905}}{-216} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(639)+9\sqrt{5905}}{2*-108}=\frac{-639+9\sqrt{5905}}{-216} $
| -8+b/3=2 | | 2(4x-3)=4+3 | | 61.8=6(m+2.2) | | 1.25(t)+7=43.25 | | 61.8=6(m+22) | | 5x-3x+4=3*2 | | 5x+80=-3x-96 | | x-(2/5)=3/5 | | 6+4(x-1)=2(x+1) | | (2x)+51=105 | | 4x^2+2x-8=-1/2x^2 | | 28n^2+184n+9=0 | | 9x^2-131x+432=0 | | v/5=3/v | | 4h+12=-4 | | 16÷x-14=18 | | 9(a-4=27 | | 3/5t+10=5 | | 3x+4x+6=9*2 | | -3(1+4r)=-99 | | 9(a-4)=12 | | 10-11v=6 | | 9×n=108 | | X+9=-5x-9 | | -4(7k+3)=4(k+5) | | (1+7x)-6(-7-x)=121 | | 3n-5=-5+5n | | 14=x-22 | | 33e+-3=96 | | 5x*2x=1440 | | 33e+-3=43 | | 17w−9w=16 |