108=n(n-2)-180,n

Simple and best practice solution for 108=n(n-2)-180,n equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 108=n(n-2)-180,n equation:



108=n(n-2)-180.n
We move all terms to the left:
108-(n(n-2)-180.n)=0
We calculate terms in parentheses: -(n(n-2)-180.n), so:
n(n-2)-180.n
We add all the numbers together, and all the variables
-180n+n(n-2)
We multiply parentheses
n^2-180n-2n
We add all the numbers together, and all the variables
n^2-182n
Back to the equation:
-(n^2-182n)
We get rid of parentheses
-n^2+182n+108=0
We add all the numbers together, and all the variables
-1n^2+182n+108=0
a = -1; b = 182; c = +108;
Δ = b2-4ac
Δ = 1822-4·(-1)·108
Δ = 33556
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{33556}=\sqrt{4*8389}=\sqrt{4}*\sqrt{8389}=2\sqrt{8389}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(182)-2\sqrt{8389}}{2*-1}=\frac{-182-2\sqrt{8389}}{-2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(182)+2\sqrt{8389}}{2*-1}=\frac{-182+2\sqrt{8389}}{-2} $

See similar equations:

| 4y+3y+1+7y-3=180 | | 0,6x=0,3(x+40) | | 3x-3=2+x | | 78=6(h+10) | | -6+13c=16-10+c | | 2+2z=2z+2 | | -16-7v=3v+14 | | -12=1/2-9.81t^2 | | 6+2y=-4y-30 | | 3m-10=26 | | 19q=20q-19 | | G-18=18-2g | | 8x/10=10/5 | | -16z-14=-17z | | (3x-2)(9x^2+6x+4)=9x(3x^2-2)-8 | | X=2x-61+x-11+3x | | 12x+2=3x+38 | | 5x-2(2x-1)-(6)=0 | | T+15=-t-7 | | -6-7b=-8b | | 2y^2-275y+10000=0 | | -14-10f=20f-14 | | 12c=13c+10 | | 5x/2=100 | | 6+u=7u | | 18b=-2+20b | | 14r-19=17r+20 | | -10-8r=-10r | | 8=6x=26 | | 4x-60=7 | | b/6+25=34 | | p−6=3 |

Equations solver categories