If it's not what You are looking for type in the equation solver your own equation and let us solve it.
108a+6a^2=15a^2
We move all terms to the left:
108a+6a^2-(15a^2)=0
determiningTheFunctionDomain 6a^2-15a^2+108a=0
We add all the numbers together, and all the variables
-9a^2+108a=0
a = -9; b = 108; c = 0;
Δ = b2-4ac
Δ = 1082-4·(-9)·0
Δ = 11664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{11664}=108$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(108)-108}{2*-9}=\frac{-216}{-18} =+12 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(108)+108}{2*-9}=\frac{0}{-18} =0 $
| 7g-12=3G-5g+96 | | 6d-2=14 | | 18=4(p+3)+2 | | t^2+1.2t+1.44=0 | | p+80/2=8 | | 5a+1÷7a+5=3a+1÷7a+1 | | 4=-2x=28 | | 5/4=−4c+1/4 | | 5/4=−4c+1/4 | | 6.4x=12.2 | | 2x^2-23x+39=0 | | 7x-7=x+8 | | 10x+10=34-2x | | 1*6-x*2=3 | | 4q=81 | | x•x•x•x•x•x•x•x•x•x•x•x•x•x=14x | | 4=r-7 | | 4(5-3x)=8x+7 | | z∕10-9=9 | | 9a^2/3a=0 | | 5+3t-1=9t+20-4t | | 9x+2x=5(-10+5) | | 6x+2-3x-6=0 | | 10(t-5)+8t=6(3t+3)-12 | | Y^5=16x^2 | | 15y-10y-6=61.40 | | -0.001x^2+3x=545+.60x | | 2x-3*6=x-1*12 | | x−2=−9 | | x-99=2.1 | | X/5.5+100/6.25=x+100/6 | | 2/5x-5/3x=1/15 |