If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=5x^2
We move all terms to the left:
10-(5x^2)=0
a = -5; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-5)·10
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{2}}{2*-5}=\frac{0-10\sqrt{2}}{-10} =-\frac{10\sqrt{2}}{-10} =-\frac{\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{2}}{2*-5}=\frac{0+10\sqrt{2}}{-10} =\frac{10\sqrt{2}}{-10} =\frac{\sqrt{2}}{-1} $
| 7x-36=-15 | | (2-x)(5x+1)-(3+x)(x-1)+8x2-15x+3=0 | | 6(3w+4)/5=-1 | | 15x+21=66 | | 4x-56=-40 | | 6-(5-2x)+7x-28=3-6x | | 2k-3k=0 | | 0=20p^2-p+2 | | 21=1.25x | | 3x-56=-38 | | 3y-5+45=8y+40-6y | | (28w+63)/3=0 | | 16=9x-29 | | 16=9x-5 | | 1+24-8x-x+3=5x | | 4y-1=5 | | 1/7x^2+1/35x=1 | | 10x-45=25 | | 0.345=16x | | 5n+9=3n-11 | | 20x+x+x=66 | | 4x-21=-1 | | 32=6y+2(-8) | | 11+9n=8 | | 5x2+5x+2=0 | | 2=-3x+37 | | -7=n/3 | | x+0.03x=49336.40 | | 3x=4,8 | | 4(2x+12)=7(3x+5) | | 9-7n+4n=46-100 | | 4z/10=-3 |