10=j2

Simple and best practice solution for 10=j2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10=j2 equation:



10=j2
We move all terms to the left:
10-(j2)=0
We add all the numbers together, and all the variables
-1j^2+10=0
a = -1; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-1)·10
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*-1}=\frac{0-2\sqrt{10}}{-2} =-\frac{2\sqrt{10}}{-2} =-\frac{\sqrt{10}}{-1} $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*-1}=\frac{0+2\sqrt{10}}{-2} =\frac{2\sqrt{10}}{-2} =\frac{\sqrt{10}}{-1} $

See similar equations:

| 2x-18+7=x+1 | | 3x^2+12x+3=22 | | (103+x)+(2x)=180 | | {3}{4}x+8=5x-14 | | 3/2x-4=26 | | 3m+4+7=-10 | | 6(m-5)+16=15-(4m-11) | | 19a=266 | | 7*n−4=31 | | 4=2.5h-12 | | 87–3t=15t+3 | | k+-1=-10 | | x+14=7x+32-3 | | 2x=3x+5/4 | | 12x-10=-8x+30 | | 4+m/8=6 | | 4.1+m=0.8 | | 0.5x+0.25x-0.2=x-0.9 | | 6(m-1)=3(3m=15) | | 171=80-u | | 8+6n-4=-20 | | $2.5+y=-3.5$ | | 7b−15=5b−3. | | 1/2(6x+8)=2x4+x | | 2x+3x=5x2 | | 7h/8-14=125/16 | | -2(3x+6)=3(2x-6) | | 7=-0.5x—3.2 | | -1/3(x+6)+4=-2+1/2+3/2x | | 4(x-7)=2(5+2x) | | 3x^2+2x=65 | | (8x+19)+(7x-4)=180 |

Equations solver categories