10=u(17-3u)

Simple and best practice solution for 10=u(17-3u) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10=u(17-3u) equation:



10=u(17-3u)
We move all terms to the left:
10-(u(17-3u))=0
We add all the numbers together, and all the variables
-(u(-3u+17))+10=0
We calculate terms in parentheses: -(u(-3u+17)), so:
u(-3u+17)
We multiply parentheses
-3u^2+17u
Back to the equation:
-(-3u^2+17u)
We get rid of parentheses
3u^2-17u+10=0
a = 3; b = -17; c = +10;
Δ = b2-4ac
Δ = -172-4·3·10
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{169}=13$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-13}{2*3}=\frac{4}{6} =2/3 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+13}{2*3}=\frac{30}{6} =5 $

See similar equations:

| 2x^+8x-56=8 | | -(x^2+x+10)+8=1 | | -(x^2+x+10)+18=1 | | 3x-21=6x+18 | | 5-3(4x+7)=2(x+5) | | 13z=-5-6z2 | | 3-(x+4)=7 | | 7(2x+1)+6=36 | | 8=(x)/(-2)+(11)/(-2) | | (√(2x+1))^2=〖(x-1)〗^2= | | -4n-6-n=2-n | | 2(x+2)+3(x+5)=99 | | Y=-9x²+120x | | 64x2-529=0 | | (21)=47+b | | A(21)=48×b | | 12x+40=15x | | 4x+3=6x–7 | | x+0.2+x+x-0.23=9.0 | | 2x+5=5x–1 | | 4y+y=200 | | 5+x=7+x | | 7−x/5=−11 | | 7−x5=−117−x5=−11 | | 4x-1-9x=-16 | | 3x=54.4 | | 7x−5=6 | | 10x−2=6 | | 10/x−2=6 | | -20=-4(b+2) | | 2x-20=2x+4 | | a^²–18a+84=0 |

Equations solver categories