10E32=(10E8+x)(x)

Simple and best practice solution for 10E32=(10E8+x)(x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10E32=(10E8+x)(x) equation:



1032=(108+E)(E)
We move all terms to the left:
1032-((108+E)(E))=0
We add all the numbers together, and all the variables
-((E+108)E)+1032=0
We calculate terms in parentheses: -((E+108)E), so:
(E+108)E
We multiply parentheses
E^2+108E
Back to the equation:
-(E^2+108E)
We get rid of parentheses
-E^2-108E+1032=0
We add all the numbers together, and all the variables
-1E^2-108E+1032=0
a = -1; b = -108; c = +1032;
Δ = b2-4ac
Δ = -1082-4·(-1)·1032
Δ = 15792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$E_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$E_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15792}=\sqrt{16*987}=\sqrt{16}*\sqrt{987}=4\sqrt{987}$
$E_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-108)-4\sqrt{987}}{2*-1}=\frac{108-4\sqrt{987}}{-2} $
$E_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-108)+4\sqrt{987}}{2*-1}=\frac{108+4\sqrt{987}}{-2} $

See similar equations:

| 7m-9=47 | | 10^-40=(10^-8+x)(x) | | X=2y-60 | | 2(u-47)=74 | | 3x-5+2x+3=5x-9 | | 12x−12=12x−12 | | 7x+7+8x+3=120 | | 7x+7+8x+3=65 | | 2x–4=70 | | x+36=(x+6)x2 | | 3x-4÷3=x-2÷9 | | x+36=x+6x2 | | 3x-4/3=x-2/9 | | 23x+8=3x-8 | | 2|3x+8|=3|x-8| | | 27x=3x+1 | | 5y+4=8-9y | | 8)z=72 | | 2p/5=10 | | (3x÷4)-(x÷2)=6 | | (m-7)×3=3m×(4-7) | | 3x-12+12=20 | | 8=1/5x | | c) +2=6 | | (5x2-12x-9)=0 | | 8x+3+7x+7=65 | | 5(3v+5)=20 | | 1081=16t^2 | | |2x+3|=3x-13 | | n*6-4=6 | | -3/4*x=9/20 | | (x+5)-(3x-7)=10 |

Equations solver categories