If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10a^2+27a-837=0
a = 10; b = 27; c = -837;
Δ = b2-4ac
Δ = 272-4·10·(-837)
Δ = 34209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{34209}=\sqrt{9*3801}=\sqrt{9}*\sqrt{3801}=3\sqrt{3801}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3\sqrt{3801}}{2*10}=\frac{-27-3\sqrt{3801}}{20} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3\sqrt{3801}}{2*10}=\frac{-27+3\sqrt{3801}}{20} $
| x2+4=20 | | 1x−4=2x+1 | | 7x+11=3x+18 | | -10(s+2)=57 | | (4x+7)=(x+6) | | 7x+4=5x–8 | | 4y+4+2y=28 | | 4(4s+8)=224 | | 2n+5=3 | | -12/n=-4 | | 4n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+16=44n+ | | 3q+4=8q-16 | | 5(y-3)=y+10 | | 5x+12+124=360 | | 2x^2x=10 | | 2s+4=-2s | | 9x-17=10x+4 | | 11x+14=360 | | 9x-17=10x+5 | | 9+1=2+a | | 2*(x+5=6x+30 | | 14n=11n+6 | | 6y-12=55 | | 2x+3x=180x= | | -x^2+4x+32= | | X+71+x+48+77=180 | | 3x+2/2=4x-3/3 | | 10x+35=5 | | -2x-4x=-4-8 | | 3g+11=26(g= | | 4-(4*0)+(4/4)=x | | 3x+164=12x-7 |