If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10d^2+33d+20=0
a = 10; b = 33; c = +20;
Δ = b2-4ac
Δ = 332-4·10·20
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-17}{2*10}=\frac{-50}{20} =-2+1/2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+17}{2*10}=\frac{-16}{20} =-4/5 $
| 6(t-4)=19 | | 3y-5=Y=2Y-9 | | -u=8 | | 11(x-3)=8x-9 | | 19+4h=1−5 | | -5+8-7r-1=-9r | | -2+x15-3=0 | | 4(y+1)=11 | | (5/6)x^2-x-(12/5)=0 | | 5x+3x=38 | | (X+10)y=17 | | -2m+2+5m=83 | | 12=-4(-6x-3 | | 16n^2+22n+3=0 | | -2+x/5-3=0 | | -8+9x=6-8x | | 2(4-3x)=3(5x+2) | | 20=4(w-9) | | 0.5x^2+0.4x+0.04=0 | | 3/4m-1/2=2/3m+1 | | 5/6x^2-x-12/5=0 | | x(x-5)=100 | | 3/5-1/6x-26=13 | | 18=3+2j-6+5j | | 10x+16x+10=140 | | 10(7+m)=120 | | 3(6+k)=27 | | -14+y=24-4y | | 5a+6=-9 | | 9x-10+5x-15+4x=65 | | 3x+15=333x+15-15=333x=33=3x/3=33/3 | | -9(3+12k)=-9(10k-3) |