If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10k^2-7k-12=0
a = 10; b = -7; c = -12;
Δ = b2-4ac
Δ = -72-4·10·(-12)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-23}{2*10}=\frac{-16}{20} =-4/5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+23}{2*10}=\frac{30}{20} =1+1/2 $
| 4^9x=5^x-8 | | X=88+-1y | | 3(v-9)=7v+5 | | 0.2x+0.4(5)=0.3(x+2)= | | (c−2)/10=7 | | 3^x1=12 | | 3/5g-1/3=-11/3 | | 1=8-3x^2 | | -6(7f-5)=22-3f | | 6+12n-2=7n+44-5n | | (2-m)/6=1 | | 8y+7+6y=-28 | | 2a^2-54=a^2+27 | | 3x-1+3x+1=90 | | (2-m)/6=6 | | -24=-3(5c-7) | | 2-m÷6=6 | | 7a+3a=19 | | 2–m/6=6 | | 9+5(1-6k)=16 | | |x-0.5|+0.3=1 | | b4-3b2-2b+4=0 | | -9b-3+6=28 | | 7(x+4)=7(x-2) | | 16=-3r-4r | | -21-9s=-3(6s+8) | | 2x+6(3)=X(-1)=4 | | 8(5n+9)=25 | | (3y-17)°=(2y+13)° | | -2(c-2)=8 | | 3(5+9v)=35 | | 5k+18=7+3k–3 |