If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10k^2-9=71
We move all terms to the left:
10k^2-9-(71)=0
We add all the numbers together, and all the variables
10k^2-80=0
a = 10; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·10·(-80)
Δ = 3200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3200}=\sqrt{1600*2}=\sqrt{1600}*\sqrt{2}=40\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{2}}{2*10}=\frac{0-40\sqrt{2}}{20} =-\frac{40\sqrt{2}}{20} =-2\sqrt{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{2}}{2*10}=\frac{0+40\sqrt{2}}{20} =\frac{40\sqrt{2}}{20} =2\sqrt{2} $
| 4-2(3x+5)=5(7-x)+11 | | 2.4=-p/4.5 | | x^2-6.2x+6=0 | | x÷6=−9 | | 16(x+2)=12-4x | | -5x+2(-3x+20)=18 | | 2x+10+x=5x | | a/9-6=0 | | (x-16)^2=15^2 | | -3x+4+x=2x-16 | | 5x+x=1800 | | 9.99+1.29n=50 | | 3x+35=12 | | 9=m+8 | | (-2x+20)(-2x+30)=0 | | 1/4h+3/4h+1/2+2=5 | | 43y=0 | | 2x+25+3x+85=180 | | -14x+13=6x-7 | | x+1+x=3x-6 | | 5(x+1)+7(x+21)=146 | | 25-3x=x-15 | | 5+x=47x=15 | | 3x=6x-15(x+8)= | | X+(x+50)+(x-20)=180 | | 9x+2.7=6x4.5 | | 4x-3+2x=5x | | 5a+8=15 | | -31-8x+6x=17 | | 2769+78=n+2766 | | 4(-3x+10)=100 | | -4x+3.7=-8x-2.1 |