If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10m^2+27m+5=0
a = 10; b = 27; c = +5;
Δ = b2-4ac
Δ = 272-4·10·5
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-23}{2*10}=\frac{-50}{20} =-2+1/2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+23}{2*10}=\frac{-4}{20} =-1/5 $
| 9(x-2)+3=9x-14 | | 12h-8h-4h+2h=12 | | Xx/2=6x | | (2x-10)(3x-12)=0 | | -3(n=7)=-13+5n | | 3÷4x^2+8x+20=0 | | n/4=84 | | 17n-16n=9 | | 0=(-5i)(-7i) | | 4+n=84 | | y^2-24y=441 | | 1-4k=-3 | | 8x-10x-4x+5x+3x=0 | | 88=5s+2s | | n-4=84 | | 13u-11u=20 | | -8(g+3)=24 | | 3/$7.50=x/10 | | p/5p+7=22 | | .75s-1.25=s/8+1.25 | | -7(-r+7)=-4r+17 | | 55-x+5x=8x-25 | | 5c-20=-22 | | 2(3t-4)=4 | | 7x+13-5x=17 | | 2+1.5c=-10 | | 8/2*3-2+6=n | | u/13=17/3 | | 7x-10x+15x+2x=0 | | 2(10x-10)-2=58 | | 6-b/15=-5 | | 6x^2-53x=-40 |