If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2+4n-12=0
a = 10; b = 4; c = -12;
Δ = b2-4ac
Δ = 42-4·10·(-12)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{31}}{2*10}=\frac{-4-4\sqrt{31}}{20} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{31}}{2*10}=\frac{-4+4\sqrt{31}}{20} $
| -30x-11=-102 | | 2n-5=n61/2 | | 45x+70=40x+90 | | 2^2x+2^x-12=0 | | 3x+24÷2x+7=2 | | a-(8-a)=32 | | n/10+6=9 | | -7(4x-11)=7 | | 248=131-y | | 3(p-3)=2(p+7) | | 100x3-60x^2+x+27=0 | | 8v2-12v-14=0 | | 5(x+2)/7-2=3x | | 1-(2x+3)-4=11 | | 3m-15=2m | | 20=y/5+13 | | (3y+2)°=(9y+1)° | | 3/5(r+10)=12 | | 10=5j-4 | | x2+10x-144=0 | | 2/5b-10=30 | | 10=-2/5u | | -2(4+5x)=-128 | | 7x+68=2x=103 | | 20-3t=5 | | 5000/x=0,07 | | 4x+24/2=4 | | 2x2-12x-80=0 | | 3n+4=-4n+24 | | 11=-3p-1 | | 6(2l+8)=72l= | | 10(-3x-7)=20 |