If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2+4n=2
We move all terms to the left:
10n^2+4n-(2)=0
a = 10; b = 4; c = -2;
Δ = b2-4ac
Δ = 42-4·10·(-2)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{6}}{2*10}=\frac{-4-4\sqrt{6}}{20} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{6}}{2*10}=\frac{-4+4\sqrt{6}}{20} $
| 0.40x+0.05=3.50 | | x3+2x²-3x=0 | | 4^7x=1024 | | 5x=11(x-70) | | 3y-6=10 | | 27^(x+3)=81 | | -15x+24x=12 | | (12/x-10)+4=0 | | 8z-3/7=-7 | | 6x–(4x–1)=2 | | 7x+4=2x+9 | | -16=14u+-8 | | x-4(x-3)=9(x+1) | | 10-3x=2x-1 | | 1x/5-x=4 | | 3-5x=4-7x | | N=5,a=-1 | | X^2+50x-25=0 | | n^2+601n-16200=0 | | -.5g+13=3g | | 8x-2=7-6x | | 6-7x=3+3x | | 5m+6=42 | | 10-3x=2x-5 | | -1/64x^2+1.5x-16=0 | | 3x+6x(10-2)=72 | | 7/12=k/36 | | 4(3t-2)=5(2-5t) | | 1/3+x=5/4 | | 3x^+5x+7=0 | | 8+14d=15d^2 | | -5u+2(u-4)=20 |