If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n=0(2n^2)
We move all terms to the left:
10n-(0(2n^2))=0
determiningTheFunctionDomain 10n-02n^2=0
We add all the numbers together, and all the variables
-02n^2+10n=0
We add all the numbers together, and all the variables
-2n^2+10n=0
a = -2; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·(-2)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*-2}=\frac{-20}{-4} =+5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*-2}=\frac{0}{-4} =0 $
| 2*2+y=11 | | |3x+8|=7 | | 1901867078(4.2062b)+0.000=b+(14/3.5-3)=b | | 18w+49÷3=-9 | | 1901867078(4.2062b)+0.000=b+(14/3.5-3) | | -6t-6=-18 | | (1901867078(4.2062a)+0.000=4a+(14/3.5-3))/a=a/100000000 | | 5f-40=-20 | | 1901867078(4.2062a)+0.000=4a+(14/3.5-3)/100000000 | | 1901867078(4.2062a)+0.000=4a+(14/3.5-3)/(100000000) | | (1901867078(4.2062a)+0.000=4a+(14/3.5-3))/(100000000) | | 1.901.867.078(4.2062a)+0.000=4a+(14/3.5-3) | | 9y^2-69y-134=0 | | 1901867078(4.2062a)+0.000=4a+(14/3.5-3) | | 9y-69y-134=0 | | 1901867078(4.2062a)+0.000=4a+1 | | -10s+20=-39 | | 1901867078(4.2062a)=4a+5 | | 1901867078(a)+4.07206630475=4a+5 | | 1901867078(4.2062a)+4.07206630475=4a+2 | | 1901867078(4a)+4.07206630475=4a+5 | | -10s-20=-39 | | 1901867078(4.2062a)+4.07206630475=4a+5 | | 1902867078(4.2062a)+4.07206630475=4a+5 | | 1905867078(4.2062a)+4.07206630475=4a+5 | | 1899867078(4.2062a)+4.07206630475=4a+5 | | 1898867078(4.2062a)+4.07206630475=4a+5 | | 1897867078(4.2062a)+4.07206630475=4a+5 | | 1900867078(4.2062a)+4.07206630475=4a+5 | | 1910867078(4.2062a)+4.07206630475=4a+5 | | 5x-5=7x+ | | 1920867078(4.2062a)+4.07206630475=4a+5 |