10p(2)+8p=61

Simple and best practice solution for 10p(2)+8p=61 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10p(2)+8p=61 equation:



10p(2)+8p=61
We move all terms to the left:
10p(2)+8p-(61)=0
We add all the numbers together, and all the variables
10p^2+8p-61=0
a = 10; b = 8; c = -61;
Δ = b2-4ac
Δ = 82-4·10·(-61)
Δ = 2504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2504}=\sqrt{4*626}=\sqrt{4}*\sqrt{626}=2\sqrt{626}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{626}}{2*10}=\frac{-8-2\sqrt{626}}{20} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{626}}{2*10}=\frac{-8+2\sqrt{626}}{20} $

See similar equations:

| 8d=7d+9 | | 2(6a-1*)=-1.6(3a+15)+6 | | (x+25)+(55)=180 | | x+123+113=180 | | 7c+25-c²=4c | | 2=(m÷2)-7 | | -21+-t=-10 | | 3(x-6)=8x-3(x+7 | | x+123-113=180 | | -2(6a-1*)=-5/3(3a+15)+6 | | –21+–t=–10 | | 0.2=6.3d | | 10(p+2)8p=61 | | -x-14-18x=14x-4 | | 18z-16=-11.5 | | x=113-113=180 | | 101+(x+29)=180 | | 2(x-7)=4x+5(3x-7) | | -I-14-18i=14i-4 | | u/8+46=48 | | x=7+19 | | x-0.2x=29000 | | -4=-x/2 | | -2(p-6)=2 | | 11x+3-10x+10=180 | | 10p+8p=61 | | 158=47-y | | 6x-24=-8(8-2x) | | N(x)=x+5 | | 16x+10=75 | | 10x+10-11x+3=180 | | 3.2x=-25.6 |

Equations solver categories