If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10p^2+17p+3=0
a = 10; b = 17; c = +3;
Δ = b2-4ac
Δ = 172-4·10·3
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-13}{2*10}=\frac{-30}{20} =-1+1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+13}{2*10}=\frac{-4}{20} =-1/5 $
| 4/3=6c-5/3 | | 3(2x-1)=3x+1=0 | | |3p-9|=36 | | -21=-5+x | | 2/5x-1/3+x/5=2/3 | | z+1/2=4/5 | | 3/4x-15=20 | | 240=20k | | 13x-8=2(6x+2) | | 8x-6=36 | | 7x-5=2(3x+4) | | 5(8+3x)+2(3x-8)=0 | | 3.6x-10.56=4.2 | | 23+3n/5=31/15 | | 4(14-x)=88 | | 3n+4/5-6=-1 | | 5+n-1=11 | | 2/3+3n/10=1/5 | | 23+3n/10=1/5 | | 2y×3=264 | | /23+3n/10=1/5 | | 8(k+4)=-7(-2k-1)+1 | | 8x-2=6x-28 | | 122-2x=72 | | P(x)=-0.9x^2-2.7x+25.2 | | 2(-7+3x)=5-(x+2) | | y/6=6/36 | | 23-4b=3b-12 | | 14+c=25 | | 9x-8=2(4x+4) | | (x+13)+52=90 | | A=3wW= |